5083 H116 Marine Grade Aluminium Sheet

Home » Products » Aluminum Sheet & Plate » 5083 H116 Marine Grade Aluminium Sheet

5083 H116 marine grade aluminium sheet offers outstanding seawater corrosion resistance, high strength-to-weight ratio, and excellent weldability for marine and offshore structures.

5083 H116 Marine Grade Aluminium Sheet

  • Alloy: 5083
  • Temper: H116
  • Thickness: 0.1-500mm customized.
  • Applications: Ship Hulls, Marine Craft, Platforms, LNG Carriers, Marine Decking, ETC.

  E-mail   Wtatsapp   Inquiry

1. Introduction

5083 H116 marine grade aluminium sheet stands as the definitive material for saltwater structural applications, combining the highest strength-to-weight ratio among non-heat-treatable alloys with exceptional corrosion resistance and cryogenic toughness.

This Al-Mg-Mn-Cr alloy delivers 305–385 MPa ultimate tensile strength while maintaining weldability and guaranteed immunity to intergranular corrosion through proprietary stabilization heat treatment.

The H116 temper specifically addresses the sensitization vulnerability inherent in high-magnesium aluminium alloys, controlling β-phase (Al₈Mg₅) precipitation to discrete, non-continuous morphologies that eliminate galvanic corrosion cells.

Consequently, 5083 H116 achieves over 10,000 hours exposure in ASTM G85 salt spray without pitting, serves in LNG containment systems at -162°C without embrittlement, and carries classification society certifications from Lloyd’s Register, DNV GL, ABS, and Bureau Veritas for hull construction, superstructures, and pressure vessels.

5083 H116 Marine Grade Aluminium Sheet

5083 H116 Marine Grade Aluminium Sheet

2. Properties of 5083 h116 marine grade aluminium sheet

Chemical Composition and Metallurgical Design

Element Specification (wt%) Functional Role
Aluminium (Al) Balance (≥94.0%) Base matrix; corrosion resistance
Magnesium (Mg) 4.0–4.9 Primary strengthening; solid solution hardening
Manganese (Mn) 0.40–1.0 Grain refinement; Al₆(Mn,Fe) dispersoid formation
Chromium (Cr) 0.05–0.25 Recrystallization control; grain boundary stabilization
Iron (Fe) ≤0.40 Controlled impurity; Al₃Fe phase limitation
Silicon (Si) ≤0.40 Controlled impurity; Mg₂Si prevention
Zinc (Zn) ≤0.25 Limitation; galvanic corrosion prevention
Titanium (Ti) 0.05–0.15 Grain refinement in casting

Mechanical Properties

Tensile and Yield Characteristics (ASTM B928)

Property 5083-H116 5083-O 5083-H321
Ultimate Tensile Strength (MPa) 305–385 270–345 305–385
Yield Strength 0.2% (MPa) 215–305 115–200 215–305
Elongation (%) 10–16 16–22 10–16
Elastic Modulus (GPa) 70.3 70.3 70.3

Fracture and Fatigue Performance

Property Value Test Method
Plane Strain Fracture Toughness (K_IC) 35–45 MPa√m ASTM E399
Fatigue Strength (10⁷ cycles, R=0.1) 110–130 MPa (smooth) ASTM E466
Fatigue Strength (welded) 70–90 MPa ASTM E466
Charpy V-Notch (longitudinal) 25–35 J ASTM E23

Cryogenic Properties

Unlike ferrous materials, 5083 H116 Marine Grade Aluminium Sheet shows no ductile-to-brittle transition. At -196°C (liquid nitrogen temperature):

  • Tensile strength increases 15–20% versus room temperature
  • Elongation remains >15%
  • Fracture toughness increases 20–30%

These characteristics enable LNG containment membrane systems operating at -162°C, where material failure risks catastrophic cargo release.

Bending Test of 5083 H116 Aluminium Sheet

Bending Test of 5083 H116 Aluminium Sheet

Physical and Thermal Properties

Property Value Application Impact
Density 2.66 g/cm³ 66% lighter than steel; critical for stability
Melting Range 574–638°C Welding parameter selection
Thermal Conductivity 120 W/(m·K) at 20°C Heat dissipation in engine compartments
Coefficient of Thermal Expansion 23.8×10⁻⁶/°C Design allowance: 2.4 mm/m for 100°C ΔT
Electrical Conductivity 29% IACS Cathodic protection current distribution
Specific Heat 900 J/(kg·K) Thermal mass calculations

3. Manufacturing of 5083 h116 marine grade aluminium sheet

Casting and Direct Chill Processing

Manufacturing 5083 aluminum sheet begins with vertical direct chill (DC) casting of 400–600 mm thick ingots. Critical process parameters include:

Grain Refinement: Titanium diboride (TiB₂) inoculation at 0.01–0.05% Ti and 0.005–0.01% B achieves ASTM 2–4 as-cast grain size (180–360 μm), preventing cast grain coarseness that would persist through subsequent thermomechanical processing.

Cooling Control: Water flow rates of 2.0–3.5 m³/min per meter of periphery extract heat at 100–200°C/min, preventing magnesium macrosegregation that would create property variations across final plate thickness.

Hydrogen Management: Degassing reduces hydrogen content to <0.15 ml/100g Al, eliminating porosity that nucleates corrosion and reduces fatigue strength.

Thermomechanical Processing

Hot Rolling: Breakdown rolling at 400–500°C reduces 600 mm cast slabs to 6–12 mm intermediate gauge, achieving 95%+ reduction. This stage develops the crystallographic texture (cube component) that persists through cold working.

Cold Rolling: Room temperature reduction of 60–85% to final gauge (1.5–150 mm) introduces work hardening dislocations that elevate strength from 110 MPa (O-temper) toward H116 targets.

Critical Thickness Effects: Plate <12 mm thick achieves uniform properties through-thickness. Thicker sections (>25 mm) exhibit centerline property reductions due to incomplete work penetration; specialized cross-rolling or heavy reduction schedules mitigate this.

H116 Stabilization Heat Treatment

The defining manufacturing stage for marine service creates H116 temper through:

Strain Hardening: 15–20% cold reduction from O-temper establishes dislocation density and stored energy.

Stabilization: 343–371°C (650–700°F) for 2–4 hours precipitates β-phase (Al₈Mg₅) at grain boundaries in controlled morphology.

Microstructural Outcome: Discrete, spheroidized β-phase particles 0.5–2.0 μm diameter, spaced 5–20 μm apart, rather than continuous film networks. This distribution eliminates galvanic coupling between grain interiors and boundaries.

Quench Requirement: Rapid air cooling post-stabilization prevents over-aging and β-phase coarsening that would reduce strength and corrosion resistance.

Finishing and Quality Verification

Stretcher Leveling: 0.5–3.0% permanent elongation in tension eliminates residual stresses from rolling, achieving flatness of <10 I-units (ASTM B209) essential for automated hull panel assembly.

Surface Finish: Mill finish (as-rolled, Ra 1.0–2.5 μm) suffices for most structural applications. Shot-blasting (Sa 2.5) prepares surfaces for adhesive bonding in sandwich constructions.

Ultrasonic Inspection: 100% scanning per ASTM B594 detects internal discontinuities (inclusions, laminations) >2 mm equivalent diameter in plate >15 mm thick. Classification society rules mandate this for hull structural applications.

5083 H116 Marine Grade Aluminium Sheet for Ship

5083 H116 Marine Grade Aluminium Sheet for Ship

4. Corrosion Science and Marine Performance

Seawater Corrosion Mechanisms

  • General Corrosion Rate: <1 μm/year in quiescent seawater; <5 μm/year in flowing (2–3 m/s) conditions
  • Pitting Resistance: Pitting potential >-0.6 V SCE in 3.5% NaCl (versus <-0.8 V for 6061)
  • Crevice Corrosion: Initiation time >1,000 hours in standard seawater crevice assemblies

Intergranular Corrosion (IGC) Immunity

The H116 Stabilization Achievement:

  • Sensitization Mechanism: Continuous β-phase (Al₈Mg₅) precipitation at grain boundaries creates galvanic Al-matrix/β-phase cells
  • H116 Solution: Controlled precipitation of discrete, widely spaced β-phase particles eliminates continuous network
  • ASTM G67 Testing: Mass loss <15 mg/cm² (Nordic Sea Water Corrosion Test); H116 guarantees pass versus <25 mg/cm² limit
  • ASTM G66 (ASSET Test): No exfoliation (EA rating) in H116; versus ED rating (susceptible) in improperly processed H321

Stress Corrosion Cracking (SCC) Resistance

  • Threshold Stress Intensity (K_ISCC): >30 MPa√m in 3.5% NaCl alternate immersion
  • Critical Environment: >50°C and >20,000 ppm Cl⁻ required for SCC initiation in H116
  • Design Implication: H116 suitable for immersed service to 80°C; H321 or alternative alloys (5456) preferred for >80°C

Galvanic Compatibility

  • Cathodic to Steel: Potential -0.78 V SCE (vs. -0.62 for steel); requires insulation or cathodic protection when coupled
  • Anodic to Copper Alloys: Potential differential 0.15–0.25 V; avoid direct contact with bronze propellers, copper-nickel piping
  • Compatible with: Titanium, austenitic stainless steels (316L), nickel alloys (Inconel 625) in properly designed assemblies

5. Advantages of 5083 H116 Marine Grade Aluminium Sheet

Exceptional Strength-to-Weight Ratio

At 2.66 g/cm³ density, 5083 H116 marine grade aluminium sheet delivers specific strength (UTS/density) of 115–145 MPa·cm³/g, versus 55–70 for mild steel and 90–110 for 6061-T6. This 65% weight reduction versus steel enables:

  • Speed increase: 15–25% higher speeds for constant power in high-speed craft
  • Payload increase: 30–40% greater cargo capacity for constant displacement
  • Fuel efficiency: 12–18% reduction in fuel consumption for constant speed
Marine used 5083 Aluminium Sheet

Marine used 5083 Aluminium Sheet

Guaranteed Corrosion Resistance

The H116 temper certification eliminates the uncertainty of H321 material, where improper stabilization creates IGC vulnerability. Shipbuilders receive guaranteed performance rather than material-dependent risk.

Superior Weldability

Property 5083-H116 6061-T6 Steel
Welding processes MIG, TIG, FSW, SAW Limited (HAZ softening) All conventional
Filler compatibility 5183, 5356, 5556 4043, 5356 Matching consumables
Joint efficiency 70–80% 50–60% 85–100%
HAZ softening Moderate (30%) Severe (50%) None

5083 welds without preheat (unless <5°C ambient), requires no post-weld heat treatment, and maintains ductility in HAZ that prevents brittle fracture.

Cryogenic Toughness

The absence of ductile-to-brittle transition enables LNG containment at -162°C, where steel would require expensive nickel alloying or risk brittle fracture.

5083-H116 serves in Mark III and NO96 membrane containment systems for 170,000+ m³ LNG carriers.

Non-Magnetic Signature

Relative magnetic permeability μᵣ = 1.003 (paramagnetic) versus >1000 for steel enables:

  • Mine countermeasures vessels: Reduced magnetic signature triggering naval mines
  • Scientific research: Undisturbed magnetic field measurements
  • Medical/rescue: MRI-compatible rescue craft

Lifecycle Cost Efficiency

Cost Element 5083-H116 Steel (DH36) Notes
Material cost ($/kg) 4.5–6.0 0.8–1.2 4–5× premium
Fabrication labor 0.7× steel 1.0× Faster welding, no coating
Maintenance (30 years) Minimal 15–25% replacement Steel requires recoating
Fuel (30 years) 0.85× steel 1.0× Lightweight hull efficiency
Total lifecycle 0.9–1.1× steel 1.0× Parity or advantage for high-speed craft

6. Applications of 5083 H116 Marine Grade Aluminium Sheet

Commercial Marine

High-Speed Craft: Hulls, decks, and superstructures of ferries (35–50 knots), crew transfer vessels for offshore wind farms, and patrol boats. The weight-strength optimization enables planing hull designs impossible with steel construction.

LNG Carriers: Secondary barrier membranes (Mark III system: corrugated 5083-H116 waffle panels), primary barrier supports, and cargo containment system structural elements. Cryogenic toughness mandatory for -162°C service.

Mega-Yachts: Superstructure weight reduction (aluminum above main deck, steel below) lowers center of gravity, improving seakeeping and enabling larger superstructures within stability limits.

Naval and Defense

Mine Countermeasures Vessels (MCMV): Glass-reinforced plastic (GRP) hulls with 5083-H116 decks and superstructures combining non-magnetic signature with structural integrity.

Littoral Combat Ships: Aluminum trimaran hulls (USS Independence class) exploiting speed and shallow draft; 5083-H116 critical for welded structure fatigue resistance.

Submarine Rescue Vehicles: Pressure hulls to 600m depth; fracture toughness prevents catastrophic implosion from manufacturing defects or impact damage.

Offshore and Industrial

Living Quarters Modules: Lightweight, corrosion-resistant accommodation platforms; fire resistance superior to GRP alternatives.

Helicopter Decks: Friction-enhanced surfaces (alumina grit embedding) providing non-skid for aviation operations; corrosion resistance to aviation fuel and seawater.

Seawater Systems: Piping, heat exchanger tube sheets, and desalination plant components where copper alloys would suffer dealloying.

Specialized Applications

Research Submersibles: Deep-diving hulls (Alvin, Limiting Factor) utilizing 5083’s yield strength and damage tolerance for manned operations to 10,000+ meters.

Arctic Vessels: Ice-class hull plating; cryogenic toughness maintains integrity at -40°C air temperatures and ice impact loading.

7. Classification Society Certification and Standards

Common standards and references that govern material selection, testing and documentation:

  • ASTM B209 — Aluminum and Aluminum-Alloy Sheet and Plate.
  • ISO 6361 / EN 573 / EN 485 — European/ISO standards for wrought aluminium sheet.
  • American Bureau of Shipping (ABS), DNV-GL (DNV), Lloyd’s Register (LR), Bureau Veritas (BV), China Classification Society (CCS) — classification societies require mill test certificates (chemical + mechanical), traceability and often specific corrosion/exfoliation test data for H116 material.
  • AWS D1.2 (where applicable) — Structural Welding Code — Aluminum.

Procurement note: buyers should demand Mill Test Certificates (MTCs), heat numbers, and certs indicating acceptance to the applicable class rules and temper.

Huawei Aluminium Sheet Warehouse

Huawei Aluminium Sheet Warehouse

8. Comparative Analysis with Alternative Marine Alloys

Property / criterion 5083-H116 5086-H116 5052-H32 5456-H116 6061-T6 Mild steel (e.g., A36)
Material class Al-Mg (5xxx) Al-Mg (5xxx) Al-Mg (5xxx) Al-Mg (5xxx, higher Mg) Al-Mg-Si (6xxx) Fe-C
Density (g·cm⁻³) 2.66 2.66 2.68 2.67 2.70 7.85
Yield Rp0.2 (MPa) ≥215 (typ.) ~215–265 ~140–160 ~250–280 ~275 ~250
Tensile Rm (MPa) 305–385 ~300–350 ~210–260 ~340–380 310–350 400–550
Elongation, A (%) ≥10–12 ≥12 8–18 ≥10–12 ~8–12 ~15–25
Weldability (fabrication) Excellent (MIG/TIG/FSW) Excellent Excellent Good–Excellent Weldable but loses strength in HAZ; filler recommended Excellent
Seawater corrosion resistance Excellent (immersion & splash) Excellent (very close to 5083) Good (limited immersion use) Excellent; often superior to 5083 Moderate (requires coatings) Poor (needs coatings/cathodic protection)
SCC (stress corrosion cracking) susceptibility Low (in H116) Low Low–moderate Low Low–moderate (environment dependent) Low (different mechanism)
Formability / cold work Very good (esp. O) Very good Excellent (very ductile) Good Fair (6xxx stiff) Moderate (ductile but heavy)
Fatigue performance Good (weld detail sensitive) Good Moderate Very good Good (design dependent) Excellent (higher fatigue strength)
Typical marine uses Hull plating, decks, tanks, superstructure Hulls, structural plates, highly similar to 5083 Fuel tanks, formed parts, interiors Higher-strength hull plates, structural members Frames, fittings, structures where high static strength needed Heavy hulls, where weight not critical, offshore structural members
Relative material cost Medium Medium Low–Medium Higher (premium) Medium–High Low (material cheap, lifecycle cost higher)
Recommendation summary Prime choice for welded hull plating & underwater service Alternative to 5083 with comparable marine performance Use where formability and economy matter, not primary immersed hull Use where higher plate strength is required and H116 processing requested Use where heat-treatable strength needed and adequate corrosion protection applied Use if weight is not a constraint and coating/cathodic protection is feasible

9. Huawei Quality Assurance and Testing Protocols

Sourcing genuine, certified 5083-H116 is critical. A leading global supplier like Henan Huawei Aluminum Co., Ltd (HWALU) ensures this through a multi-layered quality assurance system.

  • Strict Adherence to Standards: Manufacturing is performed in strict accordance with the standards of DNV, ABS, etc.
  • Advanced Production Facilities: Utilizing state-of-the-art hot rolling mills and heat treatment lines to precisely control the H116 temper process.
  • Comprehensive In-House Testing: HWALU’s laboratories are equipped to perform all necessary tests, including chemical analysis, tensile testing, and, crucially, the ASTM G66 (ASSET) test for exfoliation corrosion susceptibility.
  • Full Traceability and Documentation: Every certified plate is supplied with a complete documentation package, including the MTC and the original classification society certificate, providing the end-user with absolute confidence in the material’s integrity.

10. Conclusion

5083 H116 marine grade aluminium sheet represents the culmination of sixty years of metallurgical development specifically targeting saltwater structural applications.

The alloy’s unique combination—305–385 MPa strength, guaranteed IGC immunity through H116 stabilization, cryogenic toughness to -196°C, and weldability without post-weld heat treatment—establishes it as the default material for weight-critical marine construction.

As the marine industry confronts decarbonization imperatives, 5083-H116 enables the lightweight, efficient vessels and offshore structures essential for reduced fuel consumption and extended range.

Classification society certifications from LR, DNV GL, ABS, and Bureau Veritas provide independent verification that material meets these critical demands.

Manufacturers like Henan Huawei Aluminum Co., Ltd translate these standards into certified product, supported by comprehensive testing and technical service that ensures structural integrity across decades of saltwater service.

FAQs

Q1 — What does the H116 temper mean?
A: H116 is a controlled temper applied to 5xxx alloys that ensures specific mechanical and corrosion resistance characteristics after fabrication and welding. Classification societies accept H116 for marine applications because it shows improved resistance to exfoliation and intergranular corrosion.

Q2 — Can 5083-H116 be used for the entire hull?
A: Yes — many high-speed craft and leisure/commercial vessels use 5083 extensively for hull plating, but designers must account for fatigue, joining details and cathodic protection as appropriate.

Q3 — How much weight can a ship save by switching from steel to 5083?
A: Savings vary with design; as a rule of thumb, aluminium structures can weigh roughly one-third of comparable steel structures by volume. In practice, whole-vessel weight savings often range from several tons for small craft to tens or even ~100 t for larger vessels, depending on configuration.

Q4 — What welding method is best for 5083?
A: MIG/GMAW and TIG/GTAW are common and reliable. Friction stir welding (FSW) provides excellent joint properties for plates where applicable. Control heat input and use correct filler alloys to maintain post-weld performance.

Q5 — What documentation should a purchaser demand?
A: Mill Test Certificate (chemical + mechanical), heat/coil traceability, classification society approval or acceptance evidence, WPS/PQR for welding, and test data for exfoliation/intergranular corrosion proving H116 acceptance.

Leave a Reply

Your email address will not be published. Required fields are marked *

Latest Comments

  • Matiur Said:
    Our required qty: Aluminium Sheet in coil (620mm X 1.20mm) Qty: 200 MT. Can you give me the number of contact urgently. Thanks Matiur Rahman Director of Technical Sales dept.
  • gilbert Said:
    Bonjour ; Nous sommes une compagnie de spectacle de rue " compagnie carabosse " nous travaillons avec la flamme . nous sommes à la recherche de tôle reflecteur en aluminium pour pouvoir crée un nouvelle objet à base d'un fil métal enflammé liquide éthanol d' une hauteur environ 1 m . Quels produits avez vous à nous proposez ? Cordialement Fabrice
  • Alexander Said:
    Hello, I am interested in 3*1500*3500 mm 5754 H111 Checkered Aluminium Plate - Diamond Shape Powermaster Ltd. Moscow, Volokolamskoe shosse 1, str. 1, of. 19, Moscow, 125080
  • Fernando Budai Said:
    Buenos días, Me interesaría saber el costo de Paneles de nido de abeja de aluminio para usar como refuerzo interior de bandejas, estantes , mesadas que realizamos en acero inoxidable AISI 304. De espesor del panel de 10 y 20 mm, con la piel superior e inferior de aluminio espesor 0.8 mm liso o cepillado o solo el núcleo del nido de abeja de aluminio; con tamaño de celda de 10 o 15 mm ( o estándar ) . tamaño de las planchas de 1500 x 3000 mm o la lo que recomiende para el uso que le quiero dar. Desde ya muchas gracias
  • K+ Said:
    Proszę o ofertę na blachę aluminiową grubość 20 mm, w gatunku 1060. 8000 kg
  • Hot Products

    This is our best selling products

    Aluminum strip for transformer

    Aluminum strip for transformer

    Aluminum strip for transformer means that aluminum strip is used as conductive material in the high and low voltage windings of dry-type transformers and oil-immersed transformers.

    aluminum foil embossing jumbo roll

    Embossed aluminum foil

    Our embossed aluminum foil products are exported to more than 60 countries and regions in the European Union, the Middle East, Southeast Asia, and South America, and enjoy a good reputation in the international market with the best service and high-quality products.

    coated aluminum coil

    Prepainted Aluminum Coil

    If you are looking for top-quality prepainted aluminum coils with various alloy models and specifications, Huawei Aluminum is your ultimate choice.

    composite aluminum foil display

    Composite aluminum foil

    Composite aluminum foil is a functional material composed of aluminum foil and other materials. It has various properties such as antioxidant, heat resistance, corrosion resistance, and heat insulation

    Aluminum circle for road sign

    Aluminum circle for road sign

    Aluminum circle for road sign refers to the aluminum circle used in the production of road signs. Because aluminum circles have strong corrosion resistance and weather resistance, aluminum circles are very suitable for the production of road signs.

    1050 aluminum sheet

    1050 aluminum sheet

    1050 aluminum sheet is a kind of non-heat-treated aluminum plate, which has good plasticity, corrosion resistance, electrical conductivity and thermal conductivity after cold working;

    Our Office

    No.52, Dongming Road, Zhengzhou, Henan, China

    Call Us

    +8618137782032

    HWALU

    Henan Huawei Aluminum Co., Ltd, One Of The Biggest Aluminum Supplier In China Henan,We Are Established In 2001,And We Have rich experience in import and export and high quality aluminum products

    Opening Hours:

    Mon – Sat, 8AM – 5PM

    Sunday: Closed

    Get In Touch

    No.52, Dongming Road, Zhengzhou, Henan, China

    +8618137782032

    [email protected]

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    © Copyright © 2023 Henan Huawei Aluminium Co., Ltd

    Call Us

    Email Us

    Whatsapp

    Inquiry